
Security Assessment

Unreal Finance
CertiK Verified on Oct 13th, 2022

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

3 Major 1 Resolved, 2 Mitigated
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

8 Minor 6 Resolved, 1 Partially Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

6 Informational 6 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY UNREAL FINANCE

CertiK Verified on Oct 13th, 2022

Unreal Finance

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 10/13/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/unrealfinance/contracts-v2/

...View All

COMMITS
93b2e0ee5ea0a881fdabbd08ebb74a483d875b16

...View All

18
Total Findings

14
Resolved

2
Mitigated

1
Partially Resolved

1
Acknowledged

0
Declined

0
Unresolved

https://github.com/unrealfinance/contracts-v2/
https://github.com/unrealfinance/contracts-v2/tree/93b2e0ee5ea0a881fdabbd08ebb74a483d875b16

TABLE OF CONTENTS UNREAL FINANCE

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

CON-01 : Centralization Related Risk

CON-02 : Unused Return Value

CON-03 : Check Effect Interaction Pattern Violated

CON-04 : Missing Input Validation

COR-01 : Centralized Control of Contract Upgrade

COR-02 : Unprotected Upgradeable Contract

COR-03 : Shadowing State Variable

COR-04 : No validation check that `streamKey` is not `bytes32(0)`

COR-05 : Owner Inputs `_bytecode` for `create2`

COR-06 : No check `amountBurned` is positive before `claimYield()` is called

FUT-01 : Third Party Dependency

FUT-02 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

CON-06 : Unlocked Compiler Version

CON-07 : Missing Emit Events

COR-08 : `_protocol` may be different from what `_bytecode` describes

COR-09 : `amountUnderlying` may be larger than `totalSupply`

DER-01 : `_decimals` can be made private

FUT-03 : Incompatibility with Deflationary Tokens

Optimizations

CON-05 : Variables Could Be Declared as `immutable`

COR-07 : Unused State Variable

Formal Verification

Considered Functions And Scope

Verification Results

TABLE OF CONTENTS UNREAL FINANCE

Appendix

Disclaimer

TABLE OF CONTENTS UNREAL FINANCE

CODEBASE UNREAL FINANCE

Repository

https://github.com/unrealfinance/contracts-v2/

Commit

93b2e0ee5ea0a881fdabbd08ebb74a483d875b16

CODEBASE UNREAL FINANCE

https://github.com/unrealfinance/contracts-v2/
https://github.com/unrealfinance/contracts-v2/tree/93b2e0ee5ea0a881fdabbd08ebb74a483d875b16

AUDIT SCOPE UNREAL FINANCE

14 files audited 5 files with Acknowledged findings 4 files with Mitigated findings 4 files with Resolved findings

1 file without findings

ID File SHA256 Checksum

AFB contracts/futures/AFuture.sol
d56468f76a7f5d5da0610e194a3f6311bfa8c7748f61e3c3e10eb60f5a

2528b7

AVF
contracts/futures/AaveV3Future.

sol

2c6b3643d24db9c7ac8a2c4e03488c021787169cf4f93980a896c0f65

957fb05

CFB contracts/futures/CFuture.sol
844af1831876761df6f16633908428bdd7fecb29bed14870981ec591e

45872a5

FBB contracts/futures/FutureBase.sol
eed311c8f78b21572973ddb6f4bcc3ce91b83b844e7c257f013117bb4

eb0a3ce

YFB contracts/futures/YFuture.sol
e9d1d861f8413f6348ec0abe3c208731bb61ed0358de20877bbe127e

b8cf6575

OTB
contracts/tokens/OwnershipTok

en.sol

ecb56627a5ec73bae31eb0cb37c85a1206cb68e3654a3318364c596c

afce2bf3

YTB contracts/tokens/YieldToken.sol
ced2cede8f8d80a591c2f28eb77fc96b73701119b4bc11ee14cb36463

a5ec4c0

COR contracts/Core.sol
04c36c455ddb722aeb049a605432df4cf8d60aed5c4006e7bfb9f6f45d

827aeb

TRE contracts/Treasury.sol
603abc3b2231ec3533ad5d4812178496c2c292411f08af1ff36c45d1bf

b515ad

DTB contracts/libs/DateTime.sol
feddff6e71b0cc8e09fa9992cf76a1514b2df35209af4b733a6a02ae972

a35b0

DER
contracts/libs/DetailedERC20.so

l

064c4336d55e7990550f58f8fceadde0c3962faa41708ce6f78af0e98b

678932

MLB contracts/libs/MathLib.sol
edec61bf5e7f8b37fac095655a6e37f29f4337bd5bfb1586cb3f36e6654

8f0de

UTI contracts/libs/Utils.sol
c2f9e6d21d63796c97476a124d69fb215bf6a16fcc2270e72d28842f51

a4975f

DSS contracts/.DS_Store
c86aa53289f61c13144488d18a9068c1619a6ff49e916656175bcfd3a7

9bc405

AUDIT SCOPE UNREAL FINANCE

APPROACH & METHODS UNREAL FINANCE

This report has been prepared for Unreal Finance to discover issues and vulnerabilities in the source code of the Unreal

Finance project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS UNREAL FINANCE

FINDINGS UNREAL FINANCE

This report has been prepared to discover issues and vulnerabilities for Unreal Finance. Through this audit, we have

uncovered 18 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CON-01 Centralization Related Risk
Centralization /

Privilege
Major Mitigated

CON-02 Unused Return Value Volatile Code Minor Resolved

CON-03
Check Effect Interaction Pattern

Violated
Logical Issue Minor Partially Resolved

CON-04 Missing Input Validation Volatile Code Minor Resolved

COR-01
Centralized Control Of Contract

Upgrade

Centralization /

Privilege
Major Mitigated

COR-02 Unprotected Upgradeable Contract Language Specific Major Resolved

COR-03 Shadowing State Variable Coding Style Medium Resolved

COR-04
No Validation Check That

streamKey Is Not bytes32(0)
Inconsistency Minor Resolved

COR-05
Owner Inputs _bytecode For

create2
Volatile Code Minor Resolved

COR-06

No Check amountBurned Is

Positive Before claimYield() Is

Called

Inconsistency Minor Resolved

FINDINGS UNREAL FINANCE

18
Total Findings

0
Critical

3
Major

1
Medium

8
Minor

6
Informational

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663135486307
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342631
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663685830845
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663688731312
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663135486305
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342625
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342621
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663685296728
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663686675749
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663687865289

ID Title Category Severity Status

FUT-01 Third Party Dependency Volatile Code Minor Acknowledged

FUT-02
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

CON-06 Unlocked Compiler Version Language Specific Informational Resolved

CON-07 Missing Emit Events Coding Style Informational Resolved

COR-08
_protocol May Be Different From

What _bytecode Describes
Coding Style Informational Resolved

COR-09
amountUnderlying May Be Larger

Than totalSupply

Mathematical

Operations, Logical

Issue

Informational Resolved

DER-01 _decimals Can Be Made Private Language Specific Informational Resolved

FUT-03
Incompatibility With Deflationary

Tokens
Logical Issue Informational Resolved

FINDINGS UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342629
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342633
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663682347478
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663683482686
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663684966154
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663687571324
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663695577237
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342632

CON-01 CENTRALIZATION RELATED RISK

Category Severity Location Status

Centralization

/ Privilege
Major

contracts/Core.sol: 80, 89, 121, 149; contracts/Treasury.sol: 38,

57, 80, 100, 119, 134; contracts/futures/AFuture.sol: 36; contract

s/futures/AaveV3Future.sol: 36; contracts/futures/CFuture.sol: 3

5; contracts/futures/FutureBase.sol: 77, 82, 86, 92, 96, 102, 124,

129, 228; contracts/futures/YFuture.sol: 32; contracts/tokens/O

wnershipToken.sol: 28~29, 32~33; contracts/tokens/YieldToken.

sol: 28~29, 32~33

Mitigated

Description

In the contract Core the role _owner has authority over the functions shown in the diagram below. Any compromise to the

_owner account may allow the hacker to take advantage of this authority and change the implementation through

upgradeTo() . In turn, since this contract is the owner of each futures contract and is meant to be the owner of the

Treasury contract, tokens can be sent to unintended address from each.

CON-01 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663135486307

Function

Function Calls

Authenticated Role

Function Function Calls

Function

Function

Function Calls

Function Calls

Function Calls

Function Calls

Function Calls

startEpoch

createNewEpoch

IFuture

getStreamKey

getEpochAddress

getCurrentEpoch

revertNonExistentStream

_owner

addProtocol

registerNewStream

_authorizeUpgrade

isStreamInitialized

In the contract Treasury the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and send underlying asset tokens to

unintended addresses, draining tokens from the contract.

CON-01 UNREAL FINANCE

Function

Function Calls

Function Function Calls

Authenticated Role

Function

Function

Function Calls

Function Function Calls

Function

deposit

IFuture

IERC20

createNewTreasuryStream getStreamKey

_owner

withdraw

fundAndKickOffEpoch

renew

claimYield

streamExists

In the contract AFuture the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and mint an unbounded number of oT

tokens, then burning them in exchange for the underlying asset token through the Core contract.

Function

State Variables

Function Calls
Authenticated Role

mintOT

initialCapitalInUnderlying

_mintOT
_owner

CON-01 UNREAL FINANCE

In the contract AaveV3Future the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and mint an unbounded

number of oT tokens, then burning them in exchange for the underlying asset token through the Core contract.

Authenticated Role Function

State Variables

Function Calls

_owner mintOT

initialCapitalInUnderlying

_mintOT

In the contract CFuture the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and mint an unbounded number of oT

tokens, then burning them in exchange for the underlying asset token through the Core contract.

Function

State Variables

Function Calls
Authenticated Role

mintOT

initialCapitalInUnderlying

_mintOT
_owner

In the contract YFuture the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and mint an unbounded number of oT

tokens, then burning them in exchange for the underlying asset token through the Core contract.

Authenticated Role Function

State Variables

Function Calls

_owner mintOT

initialCapitalInUnderlying

_mintOT

CON-01 UNREAL FINANCE

In the contract FutureBase the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and mint an unbounded number of oT

tokens, then burning them in exchange for the underlying asset token through the Core contract.

Authenticated Role

Function

Function Function Calls

Function State Variables

Function

Function

Function

_owner

claimOT

mintYT

setBlocksPerYear

burnYT

burnOT

claimYT

_mintYT

blocksPerYear

In the contract FutureBase the role treasury has authority over the functions shown in the diagram below. Any

compromise to the treasury account may allow the hacker to take advantage of this authority and call expire() which

calls internal withdraw() , sending all underlying asset tokens to the treasury address.

CON-01 UNREAL FINANCE

Function

State Variables

Function Calls

Function

State Variables

Function Calls

Authenticated Role

Function Calls

Function Calls

Function Calls

Function

Function Calls

Function Calls

start

yT

oT

deposit

IDetailedERC20

createOTName

createYTName

_mintYT

expire

expired

balanceInterestBearingToken

withdraw

treasury depositInUnderlying

In the contract OwnershipToken the role MINTER_ROLE has authority over the functions burn() and mint() . Any

compromise to the MINTER_ROLE account may allow the hacker to take advantage of this authority and mint an unbounded

number of tokens to an unintended address, which could then be exchanged for the underlying asset via the Core contract.

CON-01 UNREAL FINANCE

Moreover, the hacker could burn any amount of tokens from any holding address. The same MINTER_ROLE vulnerability

occurs in YieldToken .

In the contract OwnershipToken the role ADMIN_ROLE has authority over updating the MINTER_ROLE . Any compromise to

the ADMIN_ROLE account may allow the hacker to take advantage of this authority and change the MINTER_ROLE to an

unintended address. The same ADMIN_ROLE vulnerability occurs in YieldToken .

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

CON-01 UNREAL FINANCE

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[CertiK] : The Unreal Finance team acknowledges the finding and is working toward adding multi-signature wallets to

mitigate the risk in the short term.

[Unreal Finance] : "For now, we will be using multisig with a timelock contract from openzeppelin and transferring the

ownership of Core to timelock. Hence only timelock can interact with core contract. While we are building our DAO for a long-

term solution and provide more transparency."

Update 10/10/22

[CertiK] : The team has provided all necessary information to mitigate this finding. Please see below.

Multi-sign proxy contract address: 0xfCac5736B08A6c3dA460ba21b4C91441707269c2

Internal multi-signature addresses:

0x83Fabaf7Dd2B44d27b4612B0aCdC09b3a7FE5D1a

0xF5E1cA50Da44bF3CD71856Eb861Bda320AfFd396

0xCB6d5BE2E778D575fD1734946679e8ed60bA4Ee6

Time lock contract address: 0x4ECb095869aBb691aB817c35Fd50a378D27DFD06

Transaction proof for transferring ownership to multi-signature proxy:

0x5367539a944cc6602362cf90f5ef2d6b8bb3657a7741f4c6273b18d626584486

Time lock owner transfer transaction hash:

0x33c80847981aebb62272d646a91632ed49b99fc1098f8aebeea96ed70ed21249

Medium article: https://unrealfinance.medium.com/unreal-finance-gnosis-safe-security-decentralization-

339075ba5950

CON-01 UNREAL FINANCE

https://etherscan.io/address/0xfCac5736B08A6c3dA460ba21b4C91441707269c2
https://etherscan.io/address/0x83Fabaf7Dd2B44d27b4612B0aCdC09b3a7FE5D1a
https://etherscan.io/address/0xF5E1cA50Da44bF3CD71856Eb861Bda320AfFd396
https://etherscan.io/address/0xCB6d5BE2E778D575fD1734946679e8ed60bA4Ee6
https://etherscan.io/address/0x4ECb095869aBb691aB817c35Fd50a378D27DFD06
https://etherscan.io/tx/0x5367539a944cc6602362cf90f5ef2d6b8bb3657a7741f4c6273b18d626584486
https://etherscan.io/tx/0x33c80847981aebb62272d646a91632ed49b99fc1098f8aebeea96ed70ed21249
https://unrealfinance.medium.com/unreal-finance-gnosis-safe-security-decentralization-339075ba5950

CON-02 UNUSED RETURN VALUE

Category Severity Location Status

Volatile

Code
Minor

contracts/Treasury.sol: 66; contracts/futures/AFuture.sol: 42; contracts/futur

es/AaveV3Future.sol: 42; contracts/futures/CFuture.sol: 32, 41; contracts/fu

tures/YFuture.sol: 29, 38

Resolved

Description

The return value of an external call is not stored in a local or state variable.

66 prevEpochInstance.expire();

42 ILendingPool(getProtocolFrontend()).withdraw(underlying, _amount,

treasury);

42 IPool(getProtocolFrontend()).withdraw(underlying, _amount, treasury);

32 cToken.mint(_amount);

41 cToken.redeem(_amountCToken);

29 yVault.deposit(_amount, address(this));

38 yVault.withdraw(_amount);

Recommendation

We recommend checking or using the return values of all external function calls.

Alleviation

[CertiK] : The Unreal Finance team made many of the changes described above in commit hash

565ed4d9fb5789f8325aaa4a3f0a5a3c699680dc.

See below for unresolved and newly arising issues.

CON-02 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342631
https://github.com/unrealfinance/contracts-v2/commit/565ed4d9fb5789f8325aaa4a3f0a5a3c699680dc

In Treasury , function renew() now uses the return value of expire() rather than totalBalanceUnderlying()

in recording the value for underlyingForOt[_streamKey][_prevEpoch] . Note, however, that in the YFuture

contract, these outputs differ through converting by the exchange rate. The same discrepancy arises for the

CFuture contract. We encourage the team to review this discrepancy and make changes as needed.

In YFuture , function deposit() has no check on the return value for the function call yVault.deposit() .

The remaining issues above were resolved in commits 263081922dc00ca811fd9da479267605e0051059 and

710c3c5d74bf866b9d1eccd297a3c1bf802a329a respectively.

CON-02 UNREAL FINANCE

https://github.com/unrealfinance/contracts-v2/commit/263081922dc00ca811fd9da479267605e0051059
https://github.com/unrealfinance/contracts-v2/commit/710c3c5d74bf866b9d1eccd297a3c1bf802a329a

CON-03 CHECK EFFECT INTERACTION PATTERN VIOLATED

Category Severity Location Status

Logical

Issue
Minor

contracts/Core.sol: 202~203, 303~304, 343~344; contracts/Treasu

ry.sol: 66~67; contracts/futures/FutureBase.sol: 129~130
Partially Resolved

Description

The order of external call/transfer and storage updates should follow the check-effect-interaction pattern.

Recommendation

We recommend rewriting so that storage updates are made before external calls and transfers.LINK

Alleviation

[CertiK] : The Unreal Finance team made most of the changes outlined above in commit hash

78b65ef9c717f1bec44f9c75405101dd1ac0a677.

The following issues remain.

In Core , the function createNewEpoch() makes external calls to functions in NewEpochAddr and

_treasuryAddress before making updates to state variables through the command

 streams[streamKey].push(newEpochAddr);

In Treasury , the function renew() makes an external call to function expire() in prevEpochInstance before

making updates to state variable underlyingForOt[_streamKey]

 underlyingForOt[_streamKey][_prevEpoch] = withdrawnAmount - yield;

The first remaining issue was resolved in commit 263081922dc00ca811fd9da479267605e0051059.

Please see the response below for the remaining issue.

[Unreal Finance] : "For the point in Treasury for function renew() we need the amountWithdrawn to calculate the final yield

generated with respect to the initial capital underlying as there will be some slippage while withdrawing, that is why we have

moved yield calculation after the external call."

CON-03 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663685830845
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://github.com/unrealfinance/contracts-v2/commit/78b65ef9c717f1bec44f9c75405101dd1ac0a677
https://github.com/unrealfinance/contracts-v2/commit/263081922dc00ca811fd9da479267605e0051059

CON-04 MISSING INPUT VALIDATION

Category Severity Location Status

Volatile

Code
Minor

contracts/Core.sol: 151~152, 152~153, 303~304; contracts/Treasury.sol: 10

4~105, 139~140; contracts/futures/AFuture.sol: 26~27; contracts/futures/Aa

veV3Future.sol: 26~27; contracts/futures/CFuture.sol: 25~26; contracts/futu

res/FutureBase.sol: 46~47, 47~48, 48~49, 49~50, 83~84, 87~88, 93~94, 9

7~98; contracts/futures/YFuture.sol: 22~23

Resolved

Description

Input _underlying is missing a check that it is a non-zero address

Input _durationSeconds is missing a check that it is a non-zero value.

Input _amountUnderlying is missing a check that it is a non-zero value.

Input _supply is missing a check that it is a non-zero value.

Input _core and _treasuryAddr are missing a check that they are non-zero addresses.

State variable yT is missing a check that it is a non-zero address.

State variable oT is missing a check that it is a non-zero address.

Local variables lendingProvider , compToken , and yearnVault are missing a check that they are non-zero

addresses.

Recommendation

We recommend adding in the checks described above to prevent unexpected errors.

Alleviation

[CertiK] : The Unreal Finance team resolved this finding by making the changes outlined above in commit hashes

a5e00db4b941785b03eda0d83ef465a555b93463 and 4ee741208e110d45debb75df0a6c12119bf1073f.

CON-04 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663688731312
https://github.com/unrealfinance/contracts-v2/commit/a5e00db4b941785b03eda0d83ef465a555b93463
https://github.com/unrealfinance/contracts-v2/commit/4ee741208e110d45debb75df0a6c12119bf1073f

COR-01 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization / Privilege Major contracts/Core.sol: 15 Mitigated

Description

Core is an upgradeable contract; the owner can upgrade the contract without the community's consent. If an attacker

compromises the account, he or she can change the implementation of the contract and drain tokens from the contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

COR-01 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663135486305

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[CertiK] : The Unreal Finance team acknowledges the finding and is working toward adding multi-signature wallets to

mitigate the risk in the short term.

[Unreal Finance] : "For now, we will be using multisig with a timelock contract from openzeppelin and transferring the

ownership of Core to timelock. Hence only timelock can interact with core contract. While we are building our DAO for a long-

term solution and provide more transparency."

Update 10/13/22

[CertiK] : The team has shared all necessary information to mitigate this finding. Please see below.

Multi-sign proxy contract address: 0xfCac5736B08A6c3dA460ba21b4C91441707269c2

Internal multi-signature addresses:

0x83Fabaf7Dd2B44d27b4612B0aCdC09b3a7FE5D1a

0xF5E1cA50Da44bF3CD71856Eb861Bda320AfFd396

0xCB6d5BE2E778D575fD1734946679e8ed60bA4Ee6

Time lock contract address: 0x4ECb095869aBb691aB817c35Fd50a378D27DFD06

Transaction proof for transferring ownership to multi-signature proxy:

0x5367539a944cc6602362cf90f5ef2d6b8bb3657a7741f4c6273b18d626584486

Time lock owner transfer transaction hash:

0x33c80847981aebb62272d646a91632ed49b99fc1098f8aebeea96ed70ed21249

Medium article: https://unrealfinance.medium.com/unreal-finance-gnosis-safe-security-decentralization-

339075ba5950

COR-01 UNREAL FINANCE

https://etherscan.io/address/0xfCac5736B08A6c3dA460ba21b4C91441707269c2
https://etherscan.io/address/0x83Fabaf7Dd2B44d27b4612B0aCdC09b3a7FE5D1a
https://etherscan.io/address/0xF5E1cA50Da44bF3CD71856Eb861Bda320AfFd396
https://etherscan.io/address/0xCB6d5BE2E778D575fD1734946679e8ed60bA4Ee6
https://etherscan.io/address/0x4ECb095869aBb691aB817c35Fd50a378D27DFD06
https://etherscan.io/tx/0x5367539a944cc6602362cf90f5ef2d6b8bb3657a7741f4c6273b18d626584486
https://etherscan.io/tx/0x33c80847981aebb62272d646a91632ed49b99fc1098f8aebeea96ed70ed21249
https://unrealfinance.medium.com/unreal-finance-gnosis-safe-security-decentralization-339075ba5950

COR-02 UNPROTECTED UPGRADEABLE CONTRACT

Category Severity Location Status

Language Specific Major contracts/Core.sol: 69 Resolved

Description

Core is an upgradeable contract that does not protect its initialize() function. Anyone can delete the contract with:

UUPSUpgradeable.upgradeTo(address) or UUPSUpgradeable.upgradeToAndCall(address, bytes) .

 function initialize(address _treasuryAddress) public initializer{

 function upgradeTo(address newImplementation) external virtual onlyProxy {

 function upgradeToAndCall(address newImplementation, bytes memory data) external

payable virtual onlyProxy {

Recommendation

We recommend adding a constructor with the call _disableInitializers() from Initializable to ensure

initialize() cannot be called on the logic contract.

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation and made the changes outlined above in commit

hash a8bd92ed24b01b928fbfa9eb03c55f46bf23c135.

COR-02 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342625
https://github.com/unrealfinance/contracts-v2/commit/a8bd92ed24b01b928fbfa9eb03c55f46bf23c135

COR-03 SHADOWING STATE VARIABLE

Category Severity Location Status

Coding Style Medium contracts/Core.sol: 18 Resolved

Description

A state variable is shadowing another component defined in a parent contract.

Variable _owner in Core shadows the variable _owner in OwnableUpgradeable .

18 address private _owner;

22 address private _owner;

Recommendation

We recommend removing or renaming the state variable that shadows another definition.

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation and removed the shadowing state variable in commit

hash fe7c3815104576a295ce1cbc23b42ba1a3a705d1.

COR-03 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342621
https://github.com/unrealfinance/contracts-v2/commit/fe7c3815104576a295ce1cbc23b42ba1a3a705d1

COR-04 NO VALIDATION CHECK THAT streamKey IS NOT

bytes32(0)

Category Severity Location Status

Inconsistency Minor contracts/Core.sol: 130~131 Resolved

Description

In function startEpoch() , a check is made that the calculated streamKey corresponding to the input for _protocol ,

_underlying , and _durationSeconds is not bytes32(0) . No such check is made in registerNewStream() .

Recommendation

We recommend adding a check that the calculated streamKey is not bytes32(0) for function registerNewStream() .

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation and made the changes outlined above in commit

hash 5690940c6fd320c5e99f291924ede3ba7483f522.

COR-04 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663685296728
https://github.com/unrealfinance/contracts-v2/commit/5690940c6fd320c5e99f291924ede3ba7483f522

COR-05 OWNER INPUTS _bytecode FOR create2

Category Severity Location Status

Volatile Code Minor contracts/Core.sol: 220~221, 260~261 Resolved

Description

The construction of a futures contract depends on the correct input for _bytecode by the _owner of contract Core .

However, the only check that the intended contract deployment was successful is that the owner() of the new futures

contract is address(this) .

Recommendation

We recommend adding in more checks that inputs such as _durationSeconds , the underlying asset, the treasury address

match the recorded values for that epoch.

Alleviation

[CertiK] : The Unreal Finance team added the following check at line 223 in commit

2616d54bab750971b2e43f55c34e16af12644a14

 if(IFuture(newEpochAddr).owner() != address(this) &&

 IFuture(newEpochAddr).expiry() != block.timestamp + _durationSeconds &&

 IFuture(newEpochAddr).underlying() != _underlying &&

 IFuture(newEpochAddr).treasury() != _treasuryAddress)

revert("ERR_INVALID_EPOCH");

Such a check will only revert if all parts of the check are unsatisfied. For instance, if the owner() is not address(this) but

the remaining checks pass, then the transaction will not revert. We recommend that the team revisit this logic and make

changes as needed. In this case, if the team wants the transaction to revert if any one of the checks fails, then they may

consider using || (logical OR) between each check.

The issue described above was resolved in commit hash 679f69b70c5af55be96a49c1cb503fc035263d5e.

COR-05 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663686675749
https://github.com/unrealfinance/contracts-v2/commit/2616d54bab750971b2e43f55c34e16af12644a14
https://github.com/unrealfinance/contracts-v2/commit/679f69b70c5af55be96a49c1cb503fc035263d5e

COR-06 NO CHECK amountBurned IS POSITIVE BEFORE

claimYield() IS CALLED

Category Severity Location Status

Inconsistency Minor contracts/Core.sol: 347~348, 350~351 Resolved

Description

Function redeemYield() can be called more than once, where all subsequent times will be for an amountBurned value of

0. Like function redeemPrinciple() , there should be a check that amountBurned is positive before proceeding with

claimYield() .

Recommendation

We recommend adding a check that amountBurned is positive in order to call claimYield() .

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation and made the changes outlined above in commit

hash 78b65ef9c717f1bec44f9c75405101dd1ac0a677.

COR-06 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663687865289
https://github.com/unrealfinance/contracts-v2/commit/78b65ef9c717f1bec44f9c75405101dd1ac0a677

FUT-01 THIRD PARTY DEPENDENCY

Category Severity Location Status

Volatile

Code
Minor

contracts/futures/AFuture.sol: 16; contracts/futures/AaveV3Future.sol:

16; contracts/futures/CFuture.sol: 15; contracts/futures/FutureBase.sol

: 20~21; contracts/futures/YFuture.sol: 12

Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assume their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

20 address public immutable underlying;

The contract FutureBase interacts with third party contract via underlying .

16 ILendingPoolAddressesProvider private provider;

The contract AFuture interacts with third party contract with ILendingPoolAddressesProvider interface via

provider .

16 IPoolAddressesProvider private provider;

The contract AaveV3Future interacts with third party contract with IPoolAddressesProvider interface via

provider .

15 CTokenInterface private cToken;

The contract CFuture interacts with third party contract with CTokenInterface interface via cToken .

12 IVault private yVault;

The contract YFuture interacts with third party contract with IVault interface via yVault .

FUT-01 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342629

Recommendation

We understand that the business logic requires interaction with the third parties. We encourage the team to constantly

monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Unreal Finance] "We constantly monitor any changes occurring in the third-party protocols and with the adaption of ERC

4626 for yield-bearing tokens, we will be following the same standard for third-party protocols."

FUT-01 UNREAL FINANCE

FUT-02 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile

Code
Minor

contracts/futures/CFuture.sol: 43; contracts/futures/FutureBase.sol: 83~84,

93; contracts/futures/YFuture.sol: 40
Resolved

Description

The return value of the transfer()/transferFrom() call is not checked.

43 IERC20(underlying).transfer(treasury, underlyingbalance);

83 yT.transfer(_receiver, _amount);

93 oT.transfer(_receiver, _amount);

40 IERC20(underlying).transfer(treasury, underlyingbalance);

Recommendation

Since some ERC-20 tokens return no values and others return a bool value, they should be handled with care. We

recommend using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation and made the changes outlined above in commit

hash aef8b711325bf54427b204f155307f4905b64ee5.

FUT-02 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342633
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/SafeERC20.sol
https://github.com/unrealfinance/contracts-v2/commit/aef8b711325bf54427b204f155307f4905b64ee5

CON-06 UNLOCKED COMPILER VERSION

Category Severity Location Status

Language

Specific
Informational

contracts/Core.sol: 2~3; contracts/Treasury.sol: 2~3; contracts/futur

es/AFuture.sol: 2~3; contracts/futures/AaveV3Future.sol: 3; contrac

ts/futures/CFuture.sol: 2~3; contracts/futures/FutureBase.sol: 2~3;

contracts/futures/YFuture.sol: 2~3; contracts/libs/DateTime.sol: 2~3

; contracts/libs/DetailedERC20.sol: 2~3; contracts/libs/MathLib.sol:

2~3; contracts/libs/Utils.sol: 2~3; contracts/tokens/OwnershipToke

n.sol: 2~3; contracts/tokens/YieldToken.sol: 2~3

Resolved

Description

The contracts cited have unlocked compiler versions. An unlocked compiler version in the source code of the contract

permits the user to compile it at or above a particular version. This, in turn, leads to differences in the generated bytecode

between compilations due to differing compiler version numbers. This can lead to an ambiguity when debugging as compiler

specific bugs may occur in the codebase that would be hard to identify over a span of multiple compiler versions rather than

a specific one.

Recommendation

We recommend that the compiler version is instead locked at the lowest version possible that the contract can be compiled

at. For example, for version v0.6.2 the contract should contain the following line:

pragma solidity 0.6.2;

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation above and made the changes outlined above in

commit 900d63bb48bba428456bc4862fc39d746bc1bb88.

CON-06 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663682347478
https://github.com/unrealfinance/contracts-v2/commit/900d63bb48bba428456bc4862fc39d746bc1bb88

CON-07 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

contracts/Core.sol: 89~90; contracts/futures/FutureBase.sol: 77~

78
Resolved

Description

Functions that affect the status of sensitive variables should emit events as notifications.

Recommendation

We recommend adding events for state changes or sensitive actions, and emitting them in corresponding functions

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation above and made the changes outlined above in

commit 423797f43c08c9758e7ac7145876b3b36dbc535c.

CON-07 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663683482686
https://github.com/unrealfinance/contracts-v2/commit/423797f43c08c9758e7ac7145876b3b36dbc535c

COR-08 _protocol MAY BE DIFFERENT FROM WHAT _bytecode

DESCRIBES

Category Severity Location Status

Coding Style Informational contracts/Core.sol: 121~122, 149~150 Resolved

Description

The input _protocol used to check whether the given protocol is supported does not necessarily have to match the

protocol that corresponds to the futures contract implemented through the input _bytecode . It is possible bytecode for a

futures contract corresponding to one protocol is stored under the streamKey of a different protocol.

Recommendation

We recommend clarifying the intent of the design described above.

Alleviation

[Unreal Finance] : "The idea is that we can have different future bytecode under the same stream key because we are

using futures to interact with third-party protocols and if any changes occur to the third-party protocols we can make the

changes accordingly to the future contract under the same protocol/stream key."

COR-08 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663684966154

COR-09 amountUnderlying MAY BE LARGER THAN totalSupply

Category Severity Location Status

Mathematical Operations, Logical Issue Informational contracts/Core.sol: 319~320 Resolved

Description

_amountUnderlying is the amount of underlying asset the msg.sender wishes to deposit, while totalSupply refers to

the total supply of associated yield tokens for that underlying asset. The yield tokens are in one-to-one ratio with the asset

tokens that are deposited, and they have the same decimals as the underlying asset. It is possible for the entire product

yield * _amountUnderlying / totalSupply to exceed the value of _amountUnderlying , causing a revert due to

underflow in amountOT . This may keep a user from depositing the underlying asset.

Recommendation

We recommend revisiting the formula for amountOT and deciding if it needs to be reworked to accommodate the

possibilities outlined above.

Alleviation

[Unreal Finance] : "The only possible case for yield * _amountunderlying / totalsupply to be greater than

_amountunderlying would be when yield becomes greater than or equal to 100%. Currently, we are just targeting stable

coins and ETH and this won't be possible with them. Maybe in the later versions, we'll add support for coins like OHM but

that's not in the plan as of now."

COR-09 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663687571324

DER-01 _decimals CAN BE MADE PRIVATE

Category Severity Location Status

Language Specific Informational contracts/libs/DetailedERC20.sol: 9~10 Resolved

Description

Variable _decimals can be made private to avoid two getter functions _decimals() and decimals() that return the

same value.

Recommendation

We recommend making the above updates so that there is only one getter function for _decimals .

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation above and made the changes outlined above in

commit 6850c6fc66c66b74ca9253fb95b20642fb0d1062.

DER-01 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663695577237
https://github.com/unrealfinance/contracts-v2/commit/6850c6fc66c66b74ca9253fb95b20642fb0d1062

FUT-03 INCOMPATIBILITY WITH DEFLATIONARY TOKENS

Category Severity Location Status

Logical

Issue
Informational

contracts/futures/AFuture.sol: 31, 33; contracts/futures/AaveV3Futur

e.sol: 31, 33; contracts/futures/CFuture.sol: 30, 32; contracts/future

s/FutureBase.sol: 120, 126; contracts/futures/YFuture.sol: 27, 29

Resolved

Description

When transferring deflationary ERC20 tokens, the input amount may not be equal to the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrived to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Reference: https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-

ybear-piggy-caramelswap-3943ee23a39f

31 IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);

Transferring tokens by _amount .

33 ILendingPool(getProtocolFrontend()).deposit(underlying, _amount,

address(this), 0);

The _amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Note: deposit is an external function and its behavior wasn't evaluated.

31 IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);

Transferring tokens by _amount .

33 IPool(getProtocolFrontend()).supply(underlying, _amount, address(this),

0);

The _amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Note: supply is an external function and its behavior wasn't evaluated.

FUT-03 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342632
https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

30 IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);

Transferring tokens by _amount .

32 cToken.mint(_amount);

The _amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Note: mint is an external function and its behavior wasn't evaluated.

120 deposit(_amountInUnderlying);

Transferring tokens by _amountInUnderlying .

This function call executes the following operation.

In AFuture.deposit ,

IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);

120 deposit(_amountInUnderlying);

This function call executes the following operation.

In AFuture.deposit ,

ILendingPool(getProtocolFrontend()).deposit(underlying, _amount, address(this), 0);

Note: deposit is an external function and its behavior wasn't evaluated.

The _amountInUnderlying appears to be used for bookkeeping purposes without compensating the potential

transfer fees.

120 deposit(_amountInUnderlying);

Transferring tokens by _amountInUnderlying .

This function call executes the following operation.

In YFuture.deposit ,

IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);

FUT-03 UNREAL FINANCE

120 deposit(_amountInUnderlying);

This function call executes the following operation.

In YFuture.deposit ,

yVault.deposit(_amount, address(this));

Note: deposit is an external function and its behavior wasn't evaluated.

The _amountInUnderlying appears to be used for bookkeeping purposes without compensating the potential

transfer fees.

126 deposit(_amount);

Transferring tokens by _amount .

This function call executes the following operation.

In AFuture.deposit ,

IERC20(underlying).safeTransferFrom(msg.sender, address(this), _amount);

126 deposit(_amount);

This function call executes the following operation.

In AFuture.deposit ,

ILendingPool(getProtocolFrontend()).deposit(underlying, _amount, address(this), 0);

Note: deposit is an external function and its behavior wasn't evaluated.

The _amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Recommendation

We recommend the client regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support deflationary tokens.

Alleviation

[Unreal Finance] : "We are not supporting deflationary tokens as of now. The supported tokens will include Stable Coins

and ETH. In the future with DAO in place, we will be providing support for Yearn Curve Vaults accordingly."

FUT-03 UNREAL FINANCE

OPTIMIZATIONS UNREAL FINANCE

ID Title Category Severity Status

CON-05 Variables Could Be Declared As immutable Gas Optimization Optimization Resolved

COR-07 Unused State Variable Gas Optimization Optimization Resolved

OPTIMIZATIONS UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663692971353
https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342623

CON-05 VARIABLES COULD BE DECLARED AS immutable

Category Severity Location Status

Gas

Optimization
Optimization

contracts/futures/AFuture.sol: 16~17; contracts/futures/AaveV3F

uture.sol: 16~17; contracts/futures/CFuture.sol: 15~16; contracts/

futures/YFuture.sol: 12~13; contracts/libs/DetailedERC20.sol: 9

Resolved

Description

The variables provider , yVault , cToken , and _decimals assigned in the constructor can declared with Immutable .

Immutable state variables can be assigned during contract creation but will remain constant throughout the lifetime of a

deployed contract. An advantage of immutable variables is that reading them is significantly cheaper than reading from

regular state variables since will not be stored in storage.

Recommendation

We recommend declaring the cited variables as immutable

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation above and made the changes outlined above in

commit 36c4509b223fed0d9a5c946f7d7e9c2c5e13b222.

CON-05 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663692971353
https://github.com/unrealfinance/contracts-v2/commit/36c4509b223fed0d9a5c946f7d7e9c2c5e13b222

COR-07 UNUSED STATE VARIABLE

Category Severity Location Status

Gas Optimization Optimization contracts/Core.sol: 18, 20 Resolved

Description

One or more state variables are never used in the codebase.

Variable _owner in Core is never used in Core .

18 address private _owner;

15 contract Core is Initializable, UUPSUpgradeable, OwnableUpgradeable {

Variable initialized in Core is never used in Core .

20 bool initialized;

15 contract Core is Initializable, UUPSUpgradeable, OwnableUpgradeable {

Recommendation

We recommend removing unused variables.

Alleviation

[CertiK] : The Unreal Finance team heeded the recommendation and made the changes outlined above in commit

3a74b8a2cd0bbab2bec2710dcd0352ad9520c330.

COR-07 UNREAL FINANCE

https://accelerator.audit.certikpowered.info/project/69794ca0-2e72-11ed-91a3-1d4238c01ad8/report?fid=1663136342623
https://github.com/unrealfinance/contracts-v2/commit/3a74b8a2cd0bbab2bec2710dcd0352ad9520c330

FORMAL VERIFICATION UNREAL FINANCE

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

Property Name Title

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance
Function transfer Fails if Requested Amount Exceeds Available

Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

FORMAL VERIFICATION UNREAL FINANCE

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-allowance-correct-value Function allowance Returns Correct Value

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-approve-never-return-false Function approve Never Returns false

FORMAL VERIFICATION UNREAL FINANCE

Verification Results

For the following contracts, model checking established that each of the 38 properties that were in scope of this audit (see

scope) are valid:

Contract ERC20 (Source File contracts/Treasury.sol)

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-succeed-self True

erc20-transfer-succeed-normal True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

erc20-transferfrom-change-state True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract OwnershipToken (Source File contracts/Treasury.sol)

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-correct-amount True

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-correct-amount True

erc20-approve-succeed-normal True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract YieldToken (Source File contracts/futures/FutureBase.sol)

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-self True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-fail-recipient-overflow True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-correct-value True

erc20-allowance-succeed-always True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-correct-amount True

erc20-approve-succeed-normal True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

Contract DetailedERC20 (Source File contracts/tokens/OwnershipToken.sol)

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-succeed-normal True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-succeed-self True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-false True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION UNREAL FINANCE

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION UNREAL FINANCE

APPENDIX UNREAL FINANCE

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical

Operations

Mathematical Operation findings relate to mishandling of math formulas, such as overflows, incorrect

operations etc.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private

or delete.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX UNREAL FINANCE

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER UNREAL FINANCE

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER UNREAL FINANCE

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Unreal Finance Security Assessment CertiK Verified on Oct 13th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

